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Preface

Which labor market institutions worked better in containing job losses during the
Great Recession of 2008-20097 Is it good for employment to increase the progressive-
ness of taxation? Does it make sense to contrast “active” and “passive” labor market
policies? Who actually gains and who loses from employment protection legislation?
Why are minimum wages generally diversified by age? Is it better to have decentralized
or centralized bargaining systems in monetary unions? Should migrants have access
to welfare benefits? Should governments regulate working hours? And can equal op-
portunity legislation reduce discrimination against women or minority groups in the
labor market?

Current labor economics textbooks neglect these relevant policy issues. In spite of
significant progress in analyzing the costs and benefits of labor market institutions,
these textbooks have a setup that relegates institutions to the last paragraph of
chapters or to a final institutional chapter. Typically a book begins by characterizing
labor supply (including human capital theory), labor demand, and the competitive
equilibrium at the intersection of the two curves; it subsequently addresses such topics
as wage formation and unions, compensating wage differentials, and unemployment
without a proper institutional framework. There is little information concerning labor
market institutions and labor market policies. Usually labor market policies are
mentioned only every now and then, and labor market institutions are often not
treated in a systematic way. When attention is given to these institutions, reference is
generally made to the U.S. institutional landscape and to competitive labor markets
in which, by definition, any type of policy measure is distortionary.
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1.1

Classification and Prediction

Thus far in the book, the term information has been used sparingly and when it has
been used, we have purposely been imprecise as to its meaning. Although, everyone
has an intuitive feeling for what information is, it is difficult to attach a meaningful
quantitative definition to the term. In the context of communication systems, Claude
Shannon was able to do exactly this, and as a result, opened up an entirely new view of
communication systems analysis and design [Weikum and Vossen 2001, p. 123]. The
principal contribution of Shannon’s information theory to date has been to allow
communication theorists to establish absolute bounds on communication systems
performance that cannot be exceeded no matter how ingeniously designed or complex
our communication systems are. Fundamental physical limitations on communication
systems performance is another topic that has been largely ignored in the preceding
chapters, but it is a subject of exceptional practical importance. For example, for any of
the numerous communication systems developed thus far in the book, we could decide
to design a new system that would outperform the accepted standard for a particular
application. The first question that we should ask is: how close is the present system to
achieving theoretically optimum performance? If the existing communication system
operates at or near the fundamental physical limit on performance, our task may be
difficult or impossible. However, if the existing system is far away from the absolute
performance bound, this might be an area for fruitful work.

What is Classification? What is Prediction?

Of course, in specifying the particular communication system under investigation, we
must know the important physical parameters, such as transmitted power, bandwidth,
type(s) of noise present, and so on, and information theory allows these constraints
to be incorporated. However, information theory does not provide a way for commu-
nication system complexity to be explicitly included. Although, this is something of
a drawback, information theory itself provides a way around this difficulty, since it
is generally true that as we approach the fundamental limit on the performance of a
communication system, the system complexity increases, sometimes quite drastically.
Therefore, for a simple communication system operating far from its performance
bound, we may be able to improve the performance with a relatively modest increase
in complexity. On the other hand, if we have a rather complicated communication
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system operating near its fundamental limit, any performance improvement may be
possible only with an extremely complicated system.

In this chapter we are concerned with the rather general block diagram shown
in Figure 1.1. Most of the early work by Shannon and others ignored the source
encoder/decoder blocks and concentrated on bounding the performance of the channel
encoder/decoder pair. Subsequently, the source encoder/decoder blocks have attracted
much research attention. In this chapter we consider both topics and expose the reader
to the nomenclature used in the information theory literature. Quantitative definitions
of information are presented in Sec. 1.3 that lay the foundation for the remaining
sections. In Secs. 1.3 and 1.3 we present the fundamental source and channel coding
theorems, give some examples, and state the implications of these theorems. Section 1.3
contains a brief development of rate distortion theory, which is the mathematical basis
for data compression. A few applications of the theory in this chapter are presented
in Sec. 1.3, and a technique for variable-length source coding is given in Sec. 1.3.

r=a+b— /g (L.1)

Of course, in specifying the particular communication system under investigation, we
must know the important physical parameters, such as transmitted power, bandwidth,
type(s) of noise present, and so on, and information theory allows these constraints
to be incorporated. However, information theory does not provide a way for commu-
nication system complexity to be explicitly included. Although, this is something of
a drawback, information theory itself provides a way around this difficulty, since it
is generally true that as we approach the fundamental limit on the performance of a
communication system, the system complexity increases, sometimes quite drastically.
Therefore, for a simple communication system operating far from its performance
bound, we may be able to improve the performance with a relatively modest increase
in complexity. On the other hand, if we have a rather complicated communication
system operating near its fundamental limit, any performance improvement may be
possible only with an extremely complicated system.

And Yet More of the Same

In this chapter we are concerned with the rather general block diagram shown
in Figure 1.1. Most of the early work by Shannon and others ignored the source
encoder/decoder blocks and concentrated on bounding the performance of the channel
encoder/decoder pair. Subsequently, the source encoder/decoder blocks have attracted
much research attention. In this chapter we consider both topics and expose the reader
to the nomenclature used in the information theory literature. Quantitative definitions
of information are presented in Sec. 1.3 that lay the foundation for the remaining
sections. In Secs. 1.3 and 1.3 we present the fundamental source and channel coding
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This is a caption for this figure. It is fairly long so we can make sure it looks good

when occupying more than one line. Here is one more sentence to make it longer.

theorems, give some examples, and state the implications of these theorems. Section 1.3
contains a brief development of rate distortion theory, which is the mathematical basis
for data compression. A few applications of the theory in this chapter are presented
in Sec. 1.3, and a technique for variable-length source coding is given in Sec. 1.3.

e This is a bullet list with a short item.

e And another item that is much longer so that we can make sure it is formatted
correctly and so forth and so on.

e And a final short item.

In this chapter we are concerned with the rather general block diagram shown
in Figure 1.1. Most of the early work by Shannon and others ignored the source
encoder /decoder blocks and concentrated on bounding the performance of the channel
encoder/decoder pair. Subsequently, the source encoder/decoder blocks have attracted
much research attention. In this chapter we consider both topics and expose the reader
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to the nomenclature used in the information theory literature.

a=b+c (1.2)
x = %a (1.3)

Quantitative definitions of information are presented in Sec. 1.3 that lay the foundation
for the remaining sections. In Secs. 1.3 and 1.3 we present the fundamental source and
channel coding theorems, give some examples, and state the implications of these
theorems. Section 1.1 contains a brief development of rate distortion theory, which is
the mathematical basis for data compression. A few applications of the theory in this
chapter are presented in Sec. 1.3, and a technique for variable-length source coding is
given in Sec. 1.3.

Only the binary Huffman procedure has been described here, but nonbinary codes
can be designed using the Huffman method. The details are somewhat more compli-
cated and nonbinary codes are less commonly encountered than binary ones, so further
discussion is left to the problems and the literature.

Case Study

In this section, we exemplify how the 5S extensions for content-based image retrieval
can be explored to define an image search service in the context of the CTRnet project.
The Crisis, Tragedy, and Recovery Network (CTRnet) [Bancilhon 1988] objectives
include to develop better approaches toward making technology useful for archiving
information about such events, and to support analysis of rescue, relief, and recovery,
from a digital library perspective. CTRnet has several modules, including crawling,
filtering, a Facebook application, visualization, metadata search, and Content-Based
Image Retrieval (CBIR).

The CBIR module builds upon the EVA tool for evaluating image descriptors for
content-based image retrieval [Kossmann 2000]. Eva integrates the most common
stages of an image retrieval process and provides functionalities to facilitate the
comparison of image descriptors in the context of content-based image retrieval.

In this case study, we consider the scenario in which a user is interested in find-
ing images in the CTRnet collection that are similar to a particular photo pro-
vided as example. The objective is to identify images that could be used in a re-
port on damages caused by an earthquake. In this example, the query specifica-
tion ¢ would be a tuple ¢ = (H,, Contents,, P,), where ¢ is an image (see Fig-
ure 1.1) Thus, ¢ = ((V,, Ey), Ly, Fy), Contents,, P,), where V, = vy; E, = 0
L, = 'Cathedral_P_A_P.jpg'; F, : V; U E; — L4, Contents, is the stream of the
query image; and P, : V; — Contents,.
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In this chapter we are concerned with the rather general block diagram shown
in Figure 1.1. Most of the early work by Shannon and others ignored the source
encoder/decoder blocks and concentrated on bounding the performance of the channel
encoder/decoder pair. Subsequently, the source encoder/decoder blocks have attracted
much research attention. In this chapter we consider both topics and expose the reader
to the nomenclature used in the information theory literature.

Entropy and Average Mutual Information

Consider a discrete random variable U that takes on the values {uy, us, ..., upr}, where
the set of possible values of U is often called the alphabet and the elements of the set
are called letters of the alphabet. Let Py(u) denote the probability assignment over
the alphabet, then we can define the self-information of the event u = u; by

Ty (uy) = log PUzuj) — _log Py (u;) . (1.4)
The quantity Iy (u;) is a measure of the information contained in the event u = u;.
Note that the base of the logarithm in Eq. (1.4) is unspecified. It is common to use
base e, in which case Iy (+) is in natural units (nats), or base 2, in which case I (+) is
in binary units (bits). Either base is acceptable since the difference in the two bases
is just a scaling operation. We will use base 2 in all of our work, and hence Iy () and
related quantities will be in bits. The average or expected value of the self-information
is called the entropy, also discrete entropy or absolute entropy, and is given by

M
H(U) == Py (u;)log Py (u;) . (1.5)
j=1

The following example illustrates the calculation of entropy and how it is affected by
probability assignments.
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Sidebar 1.1 Why Use a Sidebar?

The purpose of a sidebar is to present interesting information that either does not
fit in the flow of the text or is optional reading. A sidebar can contain text, lists, small
tables, and unnumbered figures.

Please note that a sidebar floats to the top or bottom of the page, just like figures
and tables. So you cannot expect the sidebar to be positioned exactly where it is in
the flow of the text in the TEX file.

Sidebars are numbered and we recommend that you include a reference to each one
at the appropriate point in the text.

Exercises and Projects
1. How might CBIR be applied so teachers with a computer and connected camera
can be reminded of the names of students in their class?

2. Consider the two colourful images (Image A and Image B) showed below, repre-
sented in the RGB color space. Suppose that the intensity values of each pixel in
all bands (R, G, and B) are the same. Furthermore, each (R, G, B) triplet is rep-
resented by a single intensity value. For example the triplet (R, G, B) = (2,2, 2)
is represented by the intensity value 2.

Suppose also that the colour space was quantized in five colors with intensity
values 0, 1, 2, 3, and 4.

3. Compute the L; between the Color Histograms (5 bins) of the two images. The
L, distance between two color histograms H4 and Hp is computed as follows:
Li(Ha,Hp) = 211(:1 |H 4[i] — Hg[i]|, where K is the size of both histograms (5,
in the case).

4. By considering both the feature vector extraction function and the distance
function defined of the descriptor Color Coherence Vector — CCV [Skeen and
Stonebraker 1983], compute the distance éccov (A, B) between the two images.

5. Consider the existence of two classes (class 1 and class 2) composed of five images
each. Consider the existence of three different descriptors (descriptor 1, descriptor
2, and descriptor 3), whose feature vector extraction functions extract vectors
belonging to the R? space. Table 1.1 shows the coordinate of each image of each
class, considering the three descriptors.
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This Is an Appendix

Of course, in specifying the particular communication system under investigation, we
must know the important physical parameters, such as transmitted power, bandwidth,
type(s) of noise present, and so on, and information theory allows these constraints
to be incorporated. However, information theory does not provide a way for commu-
nication system complexity to be explicitly included. Although, this is something of
a drawback, information theory itself provides a way around this difficulty, since it
is generally true that as we approach the fundamental limit on the performance of a
communication system, the system complexity increases, sometimes quite drastically.
Therefore, for a simple communication system operating far from its performance
bound, we may be able to improve the performance with a relatively modest increase
in complexity. On the other hand, if we have a rather complicated communication
system operating near its fundamental limit, any performance improvement may be
possible only with an extremely complicated system.

In this chapter we are concerned with the rather general block diagram shown
in Figure 1.1. Most of the early work by Shannon and others ignored the source
encoder/decoder blocks and concentrated on bounding the performance of the channel
encoder/decoder pair. Subsequently, the source encoder/decoder blocks have attracted
much research attention. In this chapter we consider both topics and expose the reader
to the nomenclature used in the information theory literature. Quantitative definitions
of information are presented in Sec. 1.3 that lay the foundation for the remaining
sections. In Secs. 1.3 and 1.1 we present the fundamental source and channel coding
theorems, give some examples, and state the implications of these theorems. Section 1.3
contains a brief development of rate distortion theory, which is the mathematical basis
for data compression. A few applications of the theory in this chapter are presented
in Sec. 1.3, and a technique for variable-length source coding is given in Sec. 1.3.

In this chapter we are concerned with the rather general block diagram shown
in Figure 1.1. Most of the early work by Shannon and others ignored the source
encoder/decoder blocks and concentrated on bounding the performance of the channel
encoder/decoder pair. Subsequently, the source encoder/decoder blocks have attracted
much research attention. In this chapter we consider both topics and expose the reader
to the nomenclature used in the information theory literature. Quantitative definitions
of information are presented in Sec. 1.3 that lay the foundation for the remaining
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sections. In Secs. 1.3 and 1.1 we present the fundamental source and channel coding
theorems, give some examples, and state the implications of these theorems.

What is Classification? What is Prediction?

Of course, in specifying the particular communication system under investigation, we
must know the important physical parameters, such as transmitted power, bandwidth,
type(s) of noise present, and so on, and information theory allows these constraints
to be incorporated. However, information theory does not provide a way for commu-
nication system complexity to be explicitly included. Although, this is something of
a drawback, information theory itself provides a way around this difficulty, since it
is generally true that as we approach the fundamental limit on the performance of a
communication system, the system complexity increases, sometimes quite drastically.
Therefore, for a simple communication system operating far from its performance
bound, we may be able to improve the performance with a relatively modest increase
in complexity. On the other hand, if we have a rather complicated communication
system operating near its fundamental limit, any performance improvement may be
possible only with an extremely complicated system.

1. This is a number list with a short item.

2. And another item that is much longer so that we can make sure it is formatted
correctly and so forth and so on.

3. And a final short item.
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